

FP7 project - SAM.SSA

Sugar Alcohol based Materials for Seasonal Storage Applications

Workshop and Onsite Demonstration– CiCenergigune

Miñano, Alava, Spain

Background and Objectives of SAM.SSA Project

Presented by Elena PALOMO DEL BARRIO Coordinator CNRS – I2M

DEALING with Thermal Energy Storage in a Seasonal Basis for heating and DHW supply in buildings

GENERAL OBJECTIVE

To develop new storage materials with potential to significantly improve the state-of-the-art

	Sensible heat	Latent heat	Thermochemical
TRL	Commercial	Prototypes	Laboratory
Effective energy density Thermal losses	Low (30 – 70 kWh/m3) Significant	Medium Usually significant	High Keduced
Charging temperature	< 100 °C	< 10° °C	Generally > 100°C
Technology	Simple	Simple	Complex
Investment cost (€/kWh)	IOW	medium	Too high

Sugar Alcohol Based Materials

PCM materials with high undercooling

Could provide

High storage energy density at T <100°C with limited thermal losses due to undercooling

Moreover

Safe materials, non corrosive, coming from renewable resources & can have acceptable price

How they can work as PCM for long-term TES

SAM.SSA project has been designed around FOUR MAIN CHALLENGES

To identify SA or to produce SA-blends with melting point below 100°C, potential to provide high energy density (close to 200 kWh/m3), and with high and stable undercooling

Heat transfer enhancement by increasing the thermal conductivity of the SA in a cost-effective way

Using conductive carbon porous structures as carrier material has been proven to be a very efficient way to increase the thermal conductivity of PCMs

Heat transfer enhancement by SA microencapsulation (increasing the specific surface area between the PCM and the HTF)

THE PROBLEMS

Polar substances with very reactive –OH groups

Often, needle shaped crystals

SEVERAL ROUTES IN PARALLEL

Microencapsulation with organic shells

Microencapsulation with inorganic shells

Microencapsulation with hybrid shells

To discharge de system when needed providing suitable power

Thank you for your attention Enjoy the workshop!

